

Can we predict animal presence and abundance statewide using remote sensing and trail cameras?

- Partner Agency
- Citizen Science / Crowdsourcing
- Remote Sensing
- Predictive Modeling
- Resource Management Objective
- Application Implementation

Modeling Animals as a Function of Remote Sensing

- Probability of occurrence
- Probability of detection
- Expected abundance

John Clare (Ph.D. Student), Ben Zuckerburg, Tim van Deelen, Phil Townsend, *UW-Madison* Jen Stenglein, *Wisconsin DNR*

Occurrence/Distribution

$z_i \sim \text{Bernoulli } (\psi_i)$

A site is occupied w/ some probability

$$Logit(\psi_i) = \beta_0 + \beta_1 X_i$$

This probability changes with environmental conditions

$$Logit(p_{ij}) = \beta_0 + \beta_1 X_{ij}$$

If occupied, we observe the species with some probability that may vary over time or space

$$y_{ij} \sim \text{Bernoulli}(p_{ij} \times z_i)$$

Our repeated presence-absence observations reflect the product of these distinct probabilities

Abundance

$$N_i \sim \text{Poisson}(\lambda_i)$$

Abundance at a site is a realization from an expected mean

$$Log(\lambda_i) = \beta_0 + \beta_1 X_i$$

Expected abundance varies across space

$$Logit(r_{ij}) = \beta_0 + \beta_1 X_{ij}$$

Each individual animal has some probability of being observed that may vary over time of space

$$p_{ij} = 1 - (1 - r_{ij}) N \downarrow i$$

The probability of observing the species at a specific time is proportional to individual detection and the number of individuals

$$y_{ij} \sim \text{Bernoulli}(p_{ij})$$

Repeated presence-absence reflects abundance and individual detection

Ongoing Work

Incorporate additional uncertainty

- MODIS Land Cover Dynamics
- Additional Landscape Metrics

Incorporate dynamics

Explicitly consider spatial demographic processes

Application by Wisconsin DNR

Social Science

Camera sites with elk

Sighting density of elk

Citizen Science: Two ways to participate

1. Host a trail camera within a survey block

Enrolling volunteers by county

SnapshotWIsignup.org

Citizen Science: Two ways to participate

2. Classify animals in photos

Laura Trouille (Adler Planetarium), many others

Live Now!

Press and Media Blitz on May 17

Building an online community

7558 comments in 4934 posts to date

Talk boards are motivational to participants, but also provide us with a wealth of information

- Qualitative data on which species are difficult for individuals to identify
- Source of opportunistic data
- Social Science Research: Public Engagement in Science

Christine Anhalt-Depies (Ph.D. Student), *UW-Madison*

Volunteer Hashtags

Objectives:

Education Attitudes Engagement Community Involvement Build relationships

Human/vehicle detection

Remove identifiable humans/vehicles
Current version: Color based
Next version: optical flow + segmentation + ML
(under development)

